Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops
نویسندگان
چکیده
An investigation of the estimation of leaf biochemistry in open tree crop canopies using high-spatial hyperspectral remote sensing imagery is presented. Hyperspectral optical indices related to leaf chlorophyll content were used to test different radiative transfer modelling assumptions in open canopies where crown, soil and shadow components were separately targeted using 1 m spatial resolution ROSIS hyperspectral imagery. Methods for scaling-up of hyperspectral single-ratio indices such as R750/R710 and combined indices such as MCARI, TCARI and OSAVI were studied to investigate the effects of scene components on indices calculated from pure crown pixels and from aggregated soil, shadow and crown reflectance. Methods were tested on 1-m resolution hyperspectral ROSIS datasets acquired over two olive groves in southern Spain during the HySens 2002 campaign conducted by the German Aerospace Center (DLR). Leaf-level biochemical estimation using 1-m ROSIS data when targeting pure olive tree crowns employed PROSPECT-SAILH radiative transfer simulation. At lower spatial resolution, therefore with significant effects of soil and shadow scene components on the aggregated pixels, a canopy model to account for such scene components had to be used for a more appropriate estimation approach for leaf biochemical concentration. The linked models PROSPECT-SAILH-FLIM improved the estimates of chlorophyll concentration from these open tree canopies, demonstrating that crown-derived relationships between hyperspectral indices and biochemical constituents cannot be readily applied to hyperspectral imagery of lower spatial resolutions due to large soil and shadow effects. Predictive equations built on a MCARI/OSAVI scaled-up index through radiative transfer simulation minimized soil background variations in these open canopies, demonstrating superior performance compared to other single-ratio indices previously shown as good indicators of chlorophyll concentration in closed canopies. The MCARI/OSAVI index was demonstrated to be less affected than TCARI/OSAVI by soil background variations when calculated from the pure crown component even at the typically low LAI orchard and grove canopies. D 2004 Elsevier Inc. All rights reserved.
منابع مشابه
Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy
Methods for chlorosis detection and physiological condition monitoring in Vitis vinifera L. through accurate chlorophyll a and b content (Cab) estimation at leaf and canopy levels are presented in this manuscript. A total of 24 vineyards were identified for field and airborne data collection with the Compact Airborne Spectrographic Imager (CASI), the Reflective Optics System Imaging Spectromete...
متن کاملVegetation Indices for Mapping Canopy Foliar Nitrogen in a Mixed Temperate Forest
Hyperspectral remote sensing serves as an effective tool for estimating foliar nitrogen using a variety of techniques. Vegetation indices (VIs) are a simple means of retrieving foliar nitrogen. Despite their popularity, few studies have been conducted to examine the utility of VIs for mapping canopy foliar nitrogen in a mixed forest context. In this study, we assessed the performance of 32 vege...
متن کاملIntegrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture
Recent studies have demonstrated the usefulness of optical indices from hyperspectral remote sensing in the assessment of vegetation biophysical variables both in forestry and agriculture. Those indices are, however, the combined response to variations of several vegetation and environmental properties, such as Leaf Area Index (LAI), leaf chlorophyll content, canopy shadows, and background soil...
متن کاملMinimization of Shadow Effects in Forest Canopies for Chlorophyll Content Estimation Using Red Edge Optical Indices through Radiative Transfer: Implications for MERIS
This paper reports on progress made to develop methods to accurately estimate pigment content in forest canopies from airborne hyperspectral data. Radiative transfer approaches and red edge optical indices were applied to twelve sites of Acer saccharum M. in the Algoma Region, Ontario (Canada), where field measurements and hyperspectral CASI reflectance data have been collected between 1997 and...
متن کاملCalibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
Article history: This article aims at finding Received 12 October 2007 Received in revised form 6 June 2008 Accepted 6 June 2008
متن کامل